Introduction

Introduction of NanoCOFC

Bin2012-12-23

Enhancement of Research Capabilities on Multi-functional Nanocomposites for Advanced Fuel Cell Technology through EU-Turkish-China Cooperation (NANOCOFC)Program: NMPContract number: under negotiationInstrument: SSAList of participants: l Royal Institute of Technology (SE)l Nigde University (TR)l University of Ulster (UK)l Joint Research Centre,Institute of Energy (NL)l&nbs……more+


Bin Zhu group well c

Bin Zhu group well corporated with Prof. Peter D.Lund a...

source:Baoyuan Wa  clicks:  pubdate:2021-04-12

  

1.Functional ceria-based nanocomposites for advanced low-temperature (300–600° C) solid oxide fuel cell: a comprehensive review

R Raza, B Zhu, A Rafique, MR Naqvi, P Lund, Materials Today Energy 15, 100373, 2020

2.Thermal performance analysis of a direct-heated recompression supercritical carbon dioxide Brayton cycle using solar concentrators. J Wang, J Wang, PD Lund, H Zhu, Energies 12 (22), 4358, 2019

3.Application of a Triple-Conducting Heterostructure Electrolyte of Ba0.5Sr0.5Co0.1Fe0.7Zr0.1Y0.1O3−δ and Ca0.04Ce0.80Sm0.16O2−δ in a High …S Rauf, B Zhu, MAK Yousaf Shah, Z Tayyab, S Attique, N Ali, N Mushtaq, ..,ACS Applied Materials & Interfaces 12 (31), 35071-35080, 2020

4.Advanced fuel cells: from materials and technologies to applications. B Zhu, P Lund, International journal of energy research 35 (12), 2011

5.Non-doped CeO2-carbonate nanocomposite electrolyte for low temperature solid oxide fuel cells. Y Jing, P Lund, MI Asghar, F Li, B Zhu, B Wang, X Zhou, C Chen, L Fan, Ceramics International 46 (18), 29290-29296, 2020

6.Low-temperature solid oxide fuel cell based on Tm-doped SrCeO2-δ semiconductor electrolyte. S Rauf, B Zhu, MAKY Shah, Z Tayyab, S Attique, N Ali, N Mushtaq, ..., Materials Today Energy, 100661, 2021

7.Electrochemical Properties of a Dual-Ion Semiconductor-Ionic Co0.2Zn0.8O-Sm0.20Ce0.80O2−δ Composite for a High-Performance Low-Temperature Solid …S Rauf, MAKY Shah, B Zhu, Z Tayyab, N Ali, S Attique, C Xia, R Khatoon, ..., ACS Applied Energy Materials 4 (1), 194-207, 2021

8.Electrolyte‐Free SOFCs: Materials, Technologies, and Working Principles. B Zhu, L Fan, JS Kim, PD Lund, Solid Oxide Fuel Cells: From Electrolyte‐Based to Electrolyte‐Free Devices, 2020

9.Tailoring triple charge conduction in BaCo0. 2Fe0. 1Ce0. 2Tm0. 1Zr0. 3Y0. 1O3− δ semiconductor electrolyte for boosting solid oxide fuel cell performance. S Rauf, B Zhu, MAKY Shah, C Xia, Z Tayyab, N Ali, C Yang, N Mushtaq, .., Renewable Energy, 2021

10.Semiconductor Nb-Doped SrTiO3−δ Perovskite Electrolyte for a Ceramic Fuel Cell. MAKY Shah, S Rauf, B Zhu, N Mushtaq, M Yousaf, PD Lund, C Xia, ..., ACS Applied Energy Materials 4 (1), 365-375, 2021

11.Application of a Triple-Conducting Heterostructure Electrolyte of Ba₀. ₅Sr₀. ₅Co₀. ₁Fe₀. ₇Zr₀. ₁Y₀. ₁O₃₋ δ and Ca₀. ₀₄Ce₀. ₈₀Sm₀. ₁₆O₂₋ δ in a High-Performance Low …, S Rauf, B Zhu, MAK Yousaf Shah, Z Tayyab, S Attique, N Ali, N Mushtaq, ACS Appled Material and Interfaces, 5;12(31):35071-35080, 2020.


 

 


Copyright © 2006-2010 NanoCOFC All Rights Reserved

                              Tech support: lucky cloud platform